
Combining Automated Theorem Provers

with

Symbolic Algebraic Systems

-- Position Paper-

Johann Schumann

Automated Reasoning,

Institut fiir Informatik, TU Miinchen,
and

Automated Software Engineering
NASA Ames

emaih schumann_ptolemy, arc.nasa, gov

Postal address:

Johann Schumann

2680 Fayette Dr. # 202

Mountain View, Ca. 94040
USA



1 Introduction

I personally became interested in ATPs and symbolic algebraic systems when

I got MuMath/MuSimp running on a 48K(!) TRS80 back in '82. I even

implemented a small propositional theorem prover (a variant of Wang's al-

gorithm [Wan60]) on top of it.

In contrast to pure mathematical applications where automated theorem

provers (ATPs) are quite capable, proof tasks arising from real-world appli-

cations from the area of Software Engineering show quite different character-

istics: they usually do not only contain much arithmetic (albeit often quite

simple one), but they also often contain reasoning about specific structures

(e.g., graphs, sets,...). Furthermore, particularly in embedded applications

where the proof tasks are generated automatically proof obligations usually

contain many redundant and unoptimized parts. Thus, an ATP must be ca-

pable of performing reasoning together with a fair amount of. simplification,

calculation and solving.

Therefore, powerful simplifiers and other (symbolic or semi-symbolic)

algorithms seem to be ideally suited to augment ATPs. In the following

we shortly describe two major points of interest in combining SASs with

top-down automated theorem provers (here: SETHEO [Let92, GLMS94]).

2 SAS as a Preprocessing Module

Interactive theorem provers and verifiers (e.g., PVS, Isabelle, KIV, HOL)

have built-in simplifiers for processing the formulas at hand. As demon-

strated by most examples and applications, simplification is one of the

most powerful tactics available. Therefore, considerable effort has been

spent on developing such simplifiers (cf. e.g., [RSSB98]). As experiments

with simplification of proof tasks arising in logic-based component retrieval

[FSS98] showed, straight-forward simplification during preprocessing even

could solve a large amount of proof tasks without even starting the theo-

rem prover. With standard rewriting and unfolding of quantifiers according

to an underlying theory with subsequent simplification, more than 40% of

the non-valid proof tasks already could be rewritten to FALSE. More than

25% of the valid conjectures could be detected by this preprocessing module

[FSS98].

As shown above, even conservative simplification during preprocessing

can lead to dramatic improvement of the prover's capabilities. Therefore,



SASsshouldbeusedfor simplificationof complexmathematical(or theory-
based)formulas,their solversshouldattempt to solvethe (oftenequational)
proofobligation (or somepartsof it). Furthermore,anSAScouldbeused
to performpartial evaluationwheneverpossible.

2.1 Dynamic Interfacing

A SAS can also be used during search for the proof. The most naive approach

would start the SAS on each subgoal as it occurs and would try to solve it or

to contradict it. However, in top-down theorem proving, identical subgoals

occur over and over again. Furthermore, most terms in the subgoals are not

much instantiated. Thus the simple approach for combining both systems

is not feasible. Two more powerful ways for combination come into mind

which should be evaluated:

SETHEO is capable of handling disjunctive (syntactic) equality-con-

straints, allowing to postpone checking for validity of the constraints.

Here, a SAS could simplify the sets of constraints and try to solve
them.

SETHEO can generate unit-lemmata in a bottom-up fashion (Delta-

preprocessor [Sch94 D. Here filters are extremely important and a com-

bination with a SAS would be most helpful.

3 Important Issues

A combination between an ATP and a SAS is certainly valuable, but various

problems have to be addressed:

• technical issues like conversion of syntax and control of the combined

system have to be solved.

• issues of soundness and completeness: Many applications (like logic-

based component retrieval) do not essentially require a 100% level

of soundness. Because the results are inspected afterwards (e.g., by

the user looking at the retrieved component), some .few errors are

acceptable. However, the question remains, inhowfar soundness of

a SAS can be estimated such that a reasonable sound system can be

designed 1.

ICertainly,checkingofthebehavioroftheSAS wouldbethebestway toensurethat



References

[FSS98]

[GLMS94]

[Let92]

[RSSB98]

[Sch94]

[Wan60]

Bernd Fischer, Johann Schumann, and Gregor Snelting. Deduc-

tion based component retrieval. In W. Bibel and P. Schmitt,

editors, Automated Deduction. A basis for applications, chapter

III.12, pages 265-292. Kluwer, 1998.

Chr. Goller, R. Letz, K. Mayr, and J. Schumann. SETHEO V3.2:

Recent Developments (System Abstract) . In Proc. CADE 12,

pages 778-782, June 1994.

Letz, R. et al. SETHEO: A High-Performance Theorem Prover.

JAR, 8(2):183-212, 1992.

W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured

Specifications and Interactive Proofs with KIV, volume II, chap-

ter II.1, pages 13-40. 1998.

J. Schumann. DELTA -- A Bottom-up Preprocessor for Top-

Down Theorem Provers, System Abstract. In CADE lg, 1994.

H. Wang. Proving theorems by pattern recognition. CA CM,

4(3):229-243, 1960.

all steps, made by the system are correct. However, the information about which rules

or built-in functions have been used to obtain the result is usually not available from the

system. However, this is more a copyright problem than a technical one. For example, with

the old ('82) version of MuMath, it was possible (with a little bit of assembler hacking)

to exactly trace which simplification rules had been applied. Checking such a rule or at

least certain preconditions (e.g., don't divide by zero) should be possible within current
TP techniques.

3


